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Figure 1. An example from our ASPIRe dataset for Visual Interactivity Understanding. The top row shows keyframes with the bounding
boxes. Appearance , Situation , Position , Interaction , and Relation are attributes presented in the dataset. Best viewed in color.

Abstract

Visual interactivity understanding within visual scenes
presents a significant challenge in computer vision. Exist-
ing methods focus on complex interactivities while lever-
aging a simple relationship model. These methods, how-
ever, struggle with a diversity of appearance, situation, po-
sition, interaction, and relation in videos. This limitation
hinders the ability to fully comprehend the interplay within
the complex visual dynamics of subjects. In this paper, we
delve into interactivities understanding within visual con-
tent by deriving scene graph representations from dense
interactivities among humans and objects. To achieve this
goal, we first present a new dataset containing Appearance-
Situation-Position-Interaction-Relation predicates, named
ASPIRe, offering an extensive collection of videos marked
by a wide range of interactivities. Then, we propose a new
approach named Hierarchical Interlacement Graph (HIG),
which leverages a unified layer and graph within a hierar-
chical structure to provide deep insights into scene changes
across five distinct tasks. Our approach demonstrates supe-
rior performance to other methods through extensive experi-
ments conducted in various scenarios.

1. Introduction

Visual interaction and relationship understanding have wit-
nessed significant advancements in computer vision in re-
cent years. Various methods, including deep learning, have
been introduced, particularly in achieving advanced compre-
hension of diverse relationships for a holistic visual under-
standing. Traditional methods span from action recognition
and localization to intricate processes like video caption-
ing [20, 47, 52], spatio-temporal detection [41, 57] and video
grounding [18, 23, 33]. However, these tasks often interpret
visual temporal sequences in a constrained, uni-dimensional
way. In addition, relation modeling techniques, including
scene graph generation [14, 48, 50] and visual relationship
detection [31, 55], adhere to predefined relation categories,
limiting the scope for discovering more diverse relationships.

Delving into the Visual Interactivity Understanding prob-
lem (Fig. 1) [14, 31, 50], we introduce a new dataset,
characterized by 5× larger interactivity types, including
Appearance-Situation-Position-Interaction-Relation, named
ASPIRe. To this end, we introduce the Hierarchical Inter-
lacement Graph (HIG), a novel approach to the Interactivity
Understanding problem. The proposed HIG framework inte-
grates the evolution of interactivities over time. It presents
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Table 1. Comparison of available datasets. # denotes the number of the corresponding item. The top sub-block of the table is the summary
of image datasets, and the bottom is video datasets. Single and Double are the attribute types as defined in Subsec. 4.1. H-H, H-O, O-O
indicate the interactivity between Human and Human, Human and Object, Object and Object.

Datasets #Videos #Frames #Subjects #RelCls #Settings Annotations Attributes
Single Double

BBox Mask #Annotations H-H H-O O-O

Visual Genome [16] - 108K 33K 42K 1 ✓ ✗ 3.8M ✗ ✗ ✓ ✓
PSG [48] - 49K 80 56 1 ✓ ✓ 538.2K ✗ ✓ ✓ ✓

VidOR [31] 10K - 80 50 1 ✓ ✗ 50K ✗ ✓ ✓ ✓
Action Genome [14] 10K 234K 25 25 1 ✓ ✗ 476.3K ✗ ✗ ✓ ✗
VidSTG [55] 10K - 80 50 1 ✓ ✗ 50K ✗ ✓ ✓ ✓
EPIC-KITCHENS [7] 700 11.5K 21 13 1 ✓ ✗ 454.3K ✗ ✗ ✓ ✗
PVSG [50] 400 153K 126 57 1 ✓ ✓ - ✗ ✓ ✓ ✓
ASPIRe (Ours) 1.5K 1.6M 833 4.5K 5 ✓ ✓ 167.8K ✓ ✓ ✓ ✓

an intuitive modeling technique and lays the groundwork
for enriched comprehension of visual activities and complex
interactivities. HIG operates with a unique unified layer at
every level to jointly process interactivities. This strategy
simplifies operations and eliminates the intricacies of multi-
layers. Instead of perceiving video content as a monolithic
block, HIG models an input video with a hierarchical struc-
ture, promoting a holistic grasp of object interplays. Each
level delves into essence insights, leveraging the strengths
of different levels to capture scene changes over time.

In addition, the proposed HIG framework promotes dy-
namic adaptability and flexibility, empowering the model
to adjust its structure and functions to capture the interac-
tivities throughout video sequences. This adaptability is
further showcased as the HIG framework proficiently tack-
les five distinct tasks, demonstrating its extensive flexibility
in decoding various interactivity nuances. The proposed
HIG framework is not confined to specific tasks or domains,
emphasizing its broad applicability and potential.

The Contributions of this Work. There are three main
contributions to this work. First, we develop a new dataset
named ASPIRe for the Visual Interactivity Understanding
problem, augmented with numerous predicate types to cap-
ture the complex interplay in the real world. Second, we pro-
pose the Hierarchical Interlacement Graph (HIG), standing
out with its hierarchical graph structure and unified layer to
ensure scalability and flexibility, comprehensively capturing
intricate interactivities within video content. Finally, com-
prehensive experiments, including evaluating other methods
on our APSIRe dataset and HIG model on both video and
image datasets, we prove the advantages of the proposed
approach that achieves State-of-the-Art (SOTA) results.

2. Related Work
2.1. Dataset and Benchmarks

Dataset. Action Genome [14] introduces a comprehensive
video database with action and spatiotemporal scene graph
annotations. VidOR [31] and EPIC-KITCHENS [7] focus
on object and relationship detection and egocentric action

recognition. Ego4D [11], VidSTG [55], and PVSG [50]
further enrich scene understanding and video scene graph
resources. These datasets provide crucial benchmarks for
evaluating scene understanding, detailed in Table 1.
Benchmarks. Current benchmarks primarily rely on rela-
tion classification for identifying inter-object associations.
Action Genome [14] integrates spatiotemporal to Visual
Genome [16] to establish scene graphs with action recog-
nition using SGFB. VidOR [31] provides 10K videos for
benchmarking video object detection and visual relation de-
tection. EPIC-KITCHENS-100 [7] offers a varied dataset
with 100 hours of video, 20M frames, and 90K actions.
Ego4D [11] focuses on first-person video data, addressing
past, present, and future aspects across nearly 3.6K videos.
VidSTG [55] introduces the Video Grounding for Multi-
Form Sentences (STVG) task, augmenting VidOR with addi-
tional sentence annotations. Recently, PVSG [50] expanded
PSG [48], advancing video graph generation.

2.2. Interactivity Modeling Approaches

Video Situation Recognition. The VidSitu [30] benchmark
provides a collection of events and situations for evaluation,
covering verb prediction, semantic role prediction, and event
relations prediction. In a related approach within this bench-
mark, VideoWhisperer [15] adopts a global perspective for
video comprehension, utilizing self-attention across all video
clips. Furthermore, the LVU [42] benchmark is tailored for
self-supervised video representation learning, with a strong
focus on hierarchical methodologies.
Video Understanding. This contains a wide range of tasks
and research efforts. Action recognition [29, 37] has ad-
vanced significantly through graph-based [44], few-shot
learning [35, 40], and transformer-based [5] approaches. An-
other area of interest is object retrieval [25, 51], object track-
ing [27, 28], spatio-temporal detection [24, 41, 57], temporal
audio-visual relationships [38] which involves object detec-
tion/segmentation, relation detection and moment retrieval
in video content. Additionally, there are challenges such as
visual question answering [39, 43, 43] and video caption-
ing [20, 47, 52]. Recently, video grounding [18, 23, 33, 46]



Appearance: person in black t-shirt
Situation: person in conversation
Position: person standing to the right of person
Relation: person talking to person Appearance: person black and blue t-shirt

Situation: person in conversation
Position: person standing to the left of person
Interaction: person holding  cup
Relation: person talking to person

Appearance: white and red cup
Situation: cup with water 
Position: cup in the hand

Figure 2. Example and annotations in our ASPIRe dataset. Best viewed in color and zoom in.
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(a) A graph representation of the attributes in Fig. 2.
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(b) Summary of annotated double-actor attributes be-
tween two actors in our ASPIRe dataset. appearance
and situation are single-actor attributes as in 4.1.

has provided activities through natural language in visual
content.
Scene Graph Generation. Biswas et al. [1] introduce a
Bayesian strategy for debiasing scene graphs in images, en-
hancing recall without retraining. PE-Net [58] leveraging
prototype alignment to improve entity-predicate matching
in a unified embedding space, incorporating novel learn-
ing and regularization to reduce semantic ambiguity. PS-
GTR [48] and PSGFormer [48] introduce recent innova-
tions in scene graph generation, which utilizes a transformer
encoder-decoder to implicitly model scene graph triplets.
Recently, PSG4DFormer [49] has been proposed to predict
segmentation masks and then track them to create associated
scene graphs through a relational component.

For dynamic scenes, TEMPURA [26] utilizes temporal
consistency and memory-guided training to enhance the de-
tection of infrequent visual relationships in videos. Cho et
al. [6] introduce the Davidsonian Scene Graph (DSG) for
assessing text-to-image alignment, operating a VQA mod-
ule to process atomic propositions from text prompts and
quantifying the alignment between text and image. Further,
advancements by [10, 17, 22, 48] have adapted scene graph
techniques to video, focusing on temporal relationships and
advancing comprehensive scene understanding.

2.3. Limitations of Prior Datasets

Existing datasets exhibit notable limitations that hinder a
comprehensive understanding of interactivity within visual
content. Many of these datasets primarily focus on a lim-
ited set of interactivity types, overlooking the complexity of
real-world interactions. This restricted scope has impeded
the development of models capable of handling a variety of
interactivities, thereby limiting their applicability to diverse
scenarios. Moreover, previous datasets predominantly em-
phasize relationships within single connected components
of the relational graph, neglecting complex scenes. Sparse

annotations in some datasets further constrain relationship
modeling, often failing to provide comprehensive coverage
and potentially leading to model bias.

To address these limitations, we introduce the new AS-
PIRe dataset to Visual Interactivity Understanding. The
diversity of the ASPIRe dataset is showcased through its
wide range of scenes and settings, distributed in seven sce-
narios. Therefore, ASPIRe distinguishes itself from earlier
datasets, including five types of interactivity, as in Fig. 2.

3. Dataset Overview

3.1. Dataset Collection and Annotation

We introduce a dataset compiled from seven distinct sources,
each contributing unique perspectives to our collection.
The ArgoVerse [4] and BDD [53] datasets focus on out-
door driving scenes, providing valuable insights into real-
world traffic scenarios. In contrast, the LaSOT [8] and
YFCC100M [36] datasets consist of in-the-wild videos, cap-
turing a diverse spectrum of human experiences and online
interactions. Additionally, our dataset incorporates content
from the AVA [12], Charades [32], and HACS [56] datasets,
encompassing videos that depict various human interactions,
including interactions between humans and objects. This
compilation results in a diverse scene featuring 833 objects.
Therefore, the ASPIRe dataset enhances the understanding
of activities, surpassing traditional image datasets like Vi-
sual Genome [16] and PSG [48] by integrating video data.
This crucial integration brings a dynamic dimension to scene
analysis that is conspicuously absent in static datasets. AS-
PIRe stands out for its exceptional detail, demonstrating the
dynamic interactivities over time. ASPIRe has a depth of
interactivities context that is notably comprehensive of other
datasets while only presenting the relationship of humans,
including VidOR [31], Action Genome [14] and PVSG [50],
marking a considerable stride in the scene understanding.



(a) Video sources. (b) Interactivity types.

Figure 3. Statistics from the proposed ASPIRe dataset.

To this end, we introduce a structured annotation file
anchored by a primary key named data. This file as-
sembles dictionaries associated with a particular frame and
detailed annotations. Each dictionary contains two cru-
cial lists: segments_info and annotations. The
segments_info list is a collection of dictionaries that
describe the individual segments of the image, and the
annotations list consists of dictionaries that offer bound-
ing boxes and masking details for each segment. Addition-
ally, objects identified within these segments and annota-
tions are assigned the track_id to maintain the identity
within a video. In particular, the annotations within the
ASPIRe dataset are distinguished by five interactivity de-
scriptors: (i) appearances details visual traits of subjects
or objects; (ii) situations describes the environmental
context; (iii) positions identifies the location and orien-
tation; (iv) interactions captures the dynamic actions
between Human-Object; (v) relations define the con-
nections and associations between Human-Human.

3.2. Dataset Statistics

The ASPIRe dataset is quantitatively analyzed in Table 1 and
visually represented in Fig. 3. ASPIRe contains 1,488 videos
covering 833 object categories and 4,549 interactivities, in-
cluding appearances, situations, positions, interactions, and
relationships. The dataset is especially remarkable for its
videos that depict a comprehensive and intricate variety of
interactivities among subjects, with the number of appear-
ances recorded at 722, situations at 2,902, positions at 130,
interactions at 565, and relations at 230. Furthermore, the
dataset features objects annotated with boxes and masks,
amounting to 167,751 detail annotations.

We provide a detailed analysis of average occurrences
within each video of the ASPIRe dataset. On average, sub-
jects are featured at 4.5 per video, showcasing diversity in
the presence of objects. Both the frequency of appearances
and situations remain steady at an average of 4.5 occurrences
per video, suggesting a uniform representation of visual el-
ements and their contextual narratives. Positions have a
marginally lower average of 4.3 per video. Interactions and
relationships averaged around 4.0 instances per video.

Figure 4. The terminologies used in our proposed ASPIRe dataset
and Hierarchical Interlacement Graph.

4. Methodology

4.1. Terminologies

Fig. 4 illustrates our definitions for analyzing interactivities
temporally. Fig. 4a shows the original definition of interactiv-
ities within the subjects as annotated in our proposed ASPIRe
dataset. Interactivities refer to the relationship between sub-
jects. Fig. 4b illustrates a new term Interlacements, which
are interactivities that span across two or sets of nodes in time
or frames. Interlacements is our novel design representing
how the interactivities evolve in our proposed HIG model,
which will be present in the next Section 5. Fig. 4b has two
parts, including double-actor and single-actor attribute inter-
lacements. Fig. 4b(i) defines double-actor attributes. double-
actor attributess include position, interaction, and relation,
which are attributes that involve two subjects. Fig. 4b(ii) de-
fines single-actor attributes. Single-actor attributes include
appearance and situation, attributes of individual subjects.

4.2. Problem Formulation

Given a video input ∈ RT×H×W×3 consisting of T frames
and frame size of H × W , we identify a set of distinct
subjects, represented as vertices in our graph, Vt = {Si}t at
a particular time t and an interactivity set I as in Eqn. (1).

I(Si, Sj) =
{
A(Si),S(Si),

PO(Si, Sj), IN (Si, Sj),RE(Si, Sj)
}
(1)

It encapsulates all possible interactivities between subjects.
Each element in I provides a fine-grain classification of
the interactivity types. These interactivities are appearance
A(Si), situation S(Si) to express the single-actor attributes,
and position PO(Si, Sj), interaction IN (Si, Sj) and re-
lation RE(Si, Sj) give the double-actor attributes, respec-
tively. The primary objective is to construct a function f .
For each pair of subjects and each frame in the video, f
identifies the most fitting interactivities from the set I . This
function is represented in Eqn. (2).

f : Vt × Vt → I (2)

For every pair of objects drawn from Vt, the function f
learns to predict an interactivity set I , defining the Visual
Interactivity Understanding task.



5. Our Proposed Method
Eqn. (2) is the primary objective in this problem. Our design
of the graph structure, as in Fig. 5, will be described below.

5.1. Hierarchical Interlacement Graph (HIG)

HIG model is designed to capture the complex dynamics
of object interactivity across both spatial and temporal di-
mensions [3]. It represents a video as a sequence of graphs
{Gt(Vt, Et)}Tt=1 at the first layer, where each graph Gt cor-
responds to a pair of frames. Here, Vt denotes the set of
nodes, and Et represents the set of edges at time t. As the
model progresses through subsequent layers, it combines
graphs from the previous layer to form new, more compre-
hensive graphs, culminating in a single graph cell at the
highest level L, representing the entire video interlacement.
HIG Blocks. The HIG model consists of HIG blocks, each
representing a distinct level of interactivity within the hierar-
chical structure. These blocks function consistently across
all levels l ∈ {1, . . . , L}. At each level l, the model inte-
grates graphs from the previous level to enhance the under-
standing of interactivity across spatial and temporal dimen-
sions, as detailed in Algorithm 1.

The feature representation F (l)
t (Si) is dynamically up-

dated for every node Si at each level l and time frame t.
This update involves transformations and aggregations of
information from the neighboring nodes of Si. Each node Si

in the graph encapsulates a feature set that evolves through
the hierarchical levels, progressing horizontally across levels
and vertically across time frames, starting from t = 1 to
Tl = T − l + 1 at each level. Specifically, at each level,
the model transitions from processing a larger number of
simpler graphs to fewer, more complex graphs. The feature
representation F (l)

t (Si) at level l, with l > 1, is derived by
aggregating transformed features of neighboring nodes from
the previous level l − 1 as shown in Eqn. (3).

F (l)
t (Si) =

∑
Sj∈N (Si)

F (l−1)
t (Sj) (3)

In Eqn. (3), the feature representation of a node at level l is
the sum of the transformed features of its neighboring nodes
from the previous level. For each node Si, the function N
identifies a set of neighboring nodes that share similar at-
tributes based on similarity scores. This procedure enhances
the comprehensiveness of each node feature set as it ascends
through the hierarchical layers.
Message-Passing Mechanism. In our hierarchical design,
nodes are interconnected through a message-passing mech-
anism. The message m

(l)
t (Si, Sj) at level l and time t is

influenced by the weight matrix W(l)
ij and the feature vector

F (l−1)
t (Sj) transmitted from Sj to Si. The message from

node Sj to Si is represented as in Eqn. (4).

m
(l)
t (Si, Sj) = W(l)

ij · F (l−1)
t (Sj) (4)

Algorithm 1 HIG Construction and Feature Embedding

• Input: Frames as graphs {Gt(Vt, Et)}Tt=1; initial features F(0)
t (Si)

for each node Si; number of hierarchical levels L; weight matricesW(l)
ij

for all levels l ∈ {1, . . . , L} and node pairs Si, Sj ∈ Vt.
• Output: I(Si, Sj)

1: for l = 1 to L do
2: Tl ← T − l + 1
3: for t = 1 to Tl do
4: Gl,t(Vl,t, El,t)← ConstructGraph(Gt, l)
5: for Si ∈ Vl,t do
6: m

(l)
t (Si, Sj)←W

(l)
ij · F

(l−1)
t (Sj), ∀Sj ∈ N (Si)

7: F(l)
t (Si)←

∑Tl
t=1 F

(l−1)
t (Sj), ∀Sj ∈ N (Si)

8: end for
9: end for

10: end for
11: (V ′

t , E
′
t)← (V ′

L,TL
, E′

L,TL
)

12: {F ′
t(Si)}Si∈V ′

t
← {F ′

L,TL
(Si)}Si∈V ′

L,TL

13: for (Si, Sj) ∈ V ′
t × V ′

t do
14: I(Si, Sj)← C

(
m

(L)
1 (Si, Sj),F

(L)
1 (Si)

)
15: end for

In Eqn. (4), the message is a product of the weight matrix
specific to that level and the feature vector of the sending
node. The message m

(l)
t (Si, Sj) is transmitted from node

Sj to node Si shaped by the dimensions of the weight matrix
W(l)

ij and the feature vector F (l−1)
t (Sj). The weight matrix

W(l)
ij , critical at level l, typically has a shape of (Dl×Dl−1),

where Dl denotes the feature dimension at level l and Dl−1

represents the dimension at the preceding level l − 1. Si-
multaneously, the feature vector of the node Sj from the
previous layer, denoted as F (l−1)

t (Sj), is represented as a
column vector with dimensions of (Dl−1 × 1).
Hierarchical Aggregation. As the HIG model traverses its
hierarchical structure, it progressively aggregates and refines
node features from the initial to the final level. This tran-
sition involves combining and transforming node features,
ensuring that the intricate details captured at lower levels
are seamlessly integrated into the higher-level context. The
process culminates at the highest level L, where the model
consolidates all the refined features into a single graph cell
at t = 1, as represented in Eqn. (5).

F (L)
1 (Si) =

∑
Sj∈N (Si)

F (L−1)
1 (Sj) (5)

Eqn. (5) indicates the final feature representation F (L)
1 (Si)

at level L is an aggregation of the transformed features of
its neighboring nodes from the previous level. This final
representation encapsulates the comprehensive interactivity
information from all hierarchical levels.
Interactivity Prediction. For every pair of nodes (Si, Sj),
the function C is employed to analyze their interactivity. This
function considers both the message m

(L)
1 (Si, Sj), which



Figure 5. Our proposed Hierarchical Interlacement Graph. The highlighted attributes denote the temporal changes in the graph. Then, all
predicted interactivities are accumulated into the next hierarchy level. A higher-level graph cell covers a bigger portion of video frames.

encapsulates the interactivity between the nodes, and the fea-
ture representation F (L)

1 (Si), which reflects the features of
the node Si at the highest hierarchical level. The prediction
function is formulated as in Eqn. (6).

I(Si, Sj) = C
(
m

(L)
1 (Si, Sj),F (L)

1 (Si)
)

(6)

In Eqn. (6), I(Si, Sj) represents the predicted interactivi-
ties between nodes Si and Sj . The classification function
C operates on the features and messages at the highest hi-
erarchical level to produce a fine-grained classification on
the edge connecting these nodes. The output of this function
is represented in the set I , where each element provides a
detailed classification of the five interactivity types, includ-
ing appearance (A), situation (S), position (PO), interaction
(IN ), and relation (RE).

Designing a framework as our HIG model, involving data
with varying subjects has distinct advantages. First, graphs
are well-suited for the task, where the number of subjects
can vary. Second, the message-passing mechanism allows
interactivities to be exchanged between neighboring nodes.
Finally, HIG allows for a contextual understanding of where
and when information occurs in the video, which is essential
for tasks that require precise timestamps of events or actions.

5.2. Training Loss

The HIG model employs an integral training loss utilizing
hierarchical weight sharing and sequential unfreezing tech-
niques, with details provided in the following section.
Sequential Training Strategy. The HIG framework em-
ploys a hierarchical weight-sharing strategy to enhance the
efficiency of the training process. By sharing weights across
different levels of the GNN hierarchy, the model takes advan-
tage of a reduction in the total number of parameters, which

operates as a regularizing mechanism to improve model gen-
eralization. In particular, training within the HIG framework
is conducted through a sequential unfreezing strategy. Ini-
tially, the base level is activated, and subsequent levels are
progressively unfrozen. This strategy allows the network to
adapt to the feature embeddings F (l)

t (Si), which are refined
at each level l and time step t.

At each level, the Focal Loss function [19] is employed
for edge classification, following [14, 48, 50], as in Eqn. (7).

L(F (l)
t (Si)) = −αt(1− pt(F (l)

t (Si)))
γ log(pt(F (l)

t (Si))) (7)

where pt measures the probability for the class, αt is a
weighting factor, and γ is a parameter that adjusts the rate.
Loss Aggregation. The losses computed at each hierarchical
level are aggregated to determine the total loss for the model
as in Eqn. (8). This aggregation ensures that the training
signal is comprehensive and encapsulates the learning objec-
tives at each hierarchy level. The HIG framework promotes
a nuanced training process, empowering the GNN to model
the inherent hierarchical structures.

Ltotal =
∑
l

L(F (l)
t (Si)) (8)

6. Experiment Results
6.1. Implementation Details

Dataset. The training set comprises 55K subjects and 197K
interactivities across 500 videos. The validation set, which is
used as the test set, comprises 988 videos with 113K subjects
and 400 interactivities. In addition, we use PSG [48] to
evaluate our performance on the image data.
Model Configurations. This work uses the PyTorch frame-
work and operates on 8× NVIDIA RTX A6000 GPUs. It



Table 2. Comparison against baseline methods on single-actor attributes.
Method Interlacement R/mR@20 R/mR@50 R/mR@100

Vanilla Appearance 10.88 / 0.09 12.19 / 0.09 14.16 / 0.08
Situation 2.87 / 0.02 5.29 / 0.03 9.05 / 0.03

Handcrafted Appearance 11.09 / 0.11 12.26 / 0.13 14.27 / 0.17
Situation 3.08 / 0.04 5.36 / 0.07 9.16 / 0.12

Convolution Appearance 11.32 / 0.11 12.28 / 0.25 14.32 / 0.22
Situation 3.31 / 0.04 5.38 / 0.19 9.21 / 0.17

Transformer Appearance 12.35 / 0.62 13.89 / 0.64 16.10 / 0.66
Situation 4.54 / 0.55 6.99 / 0.58 10.99 / 0.61

HIG (Our) Appearance 15.02 / 0.60 18.60 / 0.64 20.11/ 0.65
Situation 5.01 / 0.56 7.02 / 0.55 12.01 / 0.63

Table 3. Comparison against previous methods on ASPIRe.
Method Interlacement R/mR@20 R/mR@50 R/mR@100

IMP [45] Position 9.70 / 0.49 9.70 / 0.49 9.70 / 0.49
Interaction 12.79 / 0.08 12.79 / 0.08 12.79 / 0.08
Relation 11.51 / 0.32 11.51 / 0.32 11.51 / 0.32

MOTIFS [54] Position 6.89 / 0.48 8.49 / 0.38 8.70 / 0.40
Interaction 8.83 / 0.12 10.33 / 0.12 10.57 / 0.12
Relation 8.72 / 0.32 10.26 / 0.32 10.55 / 0.32

VCTree [34] Position 4.18 / 0.39 6.75 / 0.40 8.59 / 0.42
Interaction 6.23 / 0.10 9.58 / 0.10 11.63 / 0.10
Relation 6.51 / 0.27 9.82 / 0.28 11.51 / 0.28

GPSNet [21] Position 12.89 / 1.26 12.89 / 1.26 12.89 / 1.26
Interaction 10.89 / 0.11 10.89 / 0.12 10.89 / 0.12
Relation 9.87 / 0.35 9.87 / 0.35 9.87 / 0.35

HIG (Ours) Position 13.02 / 0.09 24.52 / 1.33 42.33 / 1.12
Interaction 12.02 / 0.11 24.65 / 0.12 41.65 / 0.14
Relation 10.26 / 0.29 23.72 / 0.34 41.47 / 0.39

utilizes a training batch size of 1 and employs the AdamW
Optimizer, starting with an initial learning rate of 0.0001.
We employ PyTorch Geometric [9] for constructing graphs
where nodes represent detections and edges signify poten-
tial interactivities. It integrates a ResNet-50 [13] backbone
trained with DETR [2]. Our framework involves edge prun-
ing using scatter_min and scatter_max for aggre-
gating node features such as bounding box coordinates and
track identification. Then, the framework calculates cosine
similarity and selects the top-k (k = 12) nearest neighbors.
Metrics. Inspired by [31, 48, 50], we calculate the recall
metric for the Visual Interactivity Understanding task to pre-
dict a set of triplets that accurately describe the input video.
The model predicts the category labels for the subject, object,
and predicate within each triplet. Each triplet represents a
distinct interactivity in the range time t1 and t2. Moreover,
each triplet corresponds to a specific subject in single-actor
scenarios and a pair of subjects in double-actor scenarios
based on a predefined set. To this end, we leverage the
standard metrics used in activity understanding, including
R@K and mR@K utilized to evaluate the recall of top K
categories and their mean recall, respectively.

6.2. Ablation Study

Baseline Methods. We re-implemented four baseline meth-
ods introduced in [50] and presented in Table 2 and Table 4
since the official implementation is unavailable. Table 2
compares all baseline methods and the HIG along single-
actor attributes, and Table 4 compares double-actor attributes.
HIG is designed to analyze videos through a hierarchical
structure that progressively accumulates temporal informa-

Table 4. Comparison against baseline methods on double-actor attributes.
Method Interlacement R/mR@20 R/mR@50 R/mR@100

Vanilla
Position 10.52 / 0.50 21.97 / 0.55 38.05 / 0.62

Interaction 10.16 / 0.12 22.35 / 0.13 39.91 / 0.14
Relation 9.71 / 0.32 21.96 / 0.36 39.11 / 0.40

Handcrafted
Position 10.73 / 0.52 22.04 / 0.59 38.16 / 0.71

Interaction 10.37 / 0.14 22.42 / 0.17 40.02 / 0.23
Relation 9.92 / 0.34 22.03 / 0.40 39.22 / 0.49

Convolution
Position 10.96 / 0.52 22.06 / 0.71 38.21 / 0.76

Interaction 10.60 / 0.14 22.44 / 0.29 40.07 / 0.28
Relation 10.15 / 0.34 22.05 / 0.52 39.27 / 0.54

Transformer
Position 11.04 / 0.83 22.52 / 0.90 38.84 / 1.02

Interaction 10.68 / 0.45 22.90 / 0.48 40.70 / 0.52
Relation 10.23 / 0.65 22.51 / 0.71 39.90 / 0.96

HIG (Ours)
Position 13.02 / 0.09 24.52 / 1.33 42.33 / 1.12

Interaction 12.02 / 0.11 24.65 / 0.12 41.65 / 0.14
Relation 10.26 / 0.29 23.72 / 0.34 41.47 / 0.39

Table 5. Comparison at different video sampling rates of our HIG.
Sampling Rate Interlacement R/mR@20 R/mR@50 R/mR@100 FPS

2 (Half)

Appearance 12.13 / 0.59 12.25 / 0.63 7.48 / 0.64

26.4
Situation 2.12 / 0.55 5.67 / 0.54 8.62 / 0.62
Position 10.13 / 0.08 18.17 / 1.32 29.7 / 1.11

Interaction 9.13 / 0.10 18.30 / 0.11 29.02 / 0.13
Relation 7.37 / 0.28 17.37 / 0.33 28.84 / 0.38

1 (Full)

Appearance 15.02 / 0.60 18.60 / 0.64 20.11 / 0.65

24.2
Situation 5.01 / 0.56 7.02 / 0.55 12.01 / 0.63
Position 13.02 / 0.09 24.52 / 1.33 42.33 / 1.12

Interaction 12.02 / 0.11 24.65 / 0.12 41.65 / 0.14
Relation 10.26 / 0.29 23.72 / 0.34 41.47 / 0.39

tion across multiple levels. Instead of getting results for
each frame separately, as is done at level l = 1, we prefer
the predictions made at higher levels, where the confidence
score is greater ≥ 0.9. A higher hierarchy level covers a
more significant portion of the video frame, as in Fig. 5. This
approach effectively reduces noise and produces a higher
recall rate. In particular, the HIG method is better at recog-
nizing single-actor attributes than other baselines, including
Transformer, Convolution, Handcrafted, and Vanilla. Specif-
ically, the HIG model is 2.67% higher than the Transformer,
the best method in baseline at R@20. HIG is also better for
the double-actor attributes, especially in figuring out interac-
tions and relations. It is 1.34% higher than Transformers at
R@20 when identifying interactions. We visualize keyframe
predictions in a video, as shown in Fig. 6.
Video Sampling Rates. Table 5 explores the influence of
frame sampling rates on the performance of the HIG model
in deployment. Our analysis focuses on evaluating the per-
formance under a reduced number of frames. In the AS-
PIRe dataset, the testing set includes 988 videos, totaling
10,456,48 frames. We address the efficiency of the HIG
model by halving the number of frames in each video. In
particular, we discard one frame out of every two successive
frames. Our experiment reveals a trade-off between recall
score and inference time, where the HIG model experiences
a decrease in recall performance but achieves a 2.2 FPS
increase in inference speed.

6.3. Comparison with State-of-the-Arts

Performance on ASPIRe. We provide the comparative
analysis with SOTAs in Table 3, including IMP [45], MO-
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Figure 6. Qualitative results of position, interaction, and relation from scene graphs generated from the HIG model.

Table 6. Comparison against previous methods on SGG task.
Method Interlacement R/mR@20 R/mR@50 R/mR@100

IMP [45] Position 0.25 / 0.36 0.29 / 0.35 0.30 / 0.33
Interaction 0.71 / 0.13 0.98 / 0.12 1.15 / 0.13
Relation 0.80 / 0.26 0.81 / 0.25 0.84 / 0.24

MOTIFS [54] Position 0.23 / 0.43 0.23 / 0.43 0.31 /0.38
Interaction 0.39 / 0.11 0.94 / 0.11 1.17 / 0.10
Relation 0.31 / 0.30 0.32 / 0.28 0.53 / 0.32

VCTree [34] Position 0.13 / 0.23 0.14 / 0.22 0.14 / 0.21
Interaction 0.55 / 0.07 0.65 / 0.08 0.72 / 0.08
Relation 0.39 / 0.18 0.39 / 0.20 0.43 / 0.21

GPSNet [21] Position 0.09 / 0.46 1.17 / 0.37 1.32 / 0.46
Interaction 0.99 / 0.09 1.02 / 0.09 1.11 / 0.09
Relation 0.14 / 0.23 0.16 / 0.13 0.29 / 0.23

HIG (Ours) Position 1.00 / 0.42 2.40 / 0.44 4.87 / 0.47
Interaction 1.30 / 0.09 3.45 / 0.11 6.93 / 0.12
Relation 1.26 / 0.27 3.43 / 0.30 7.02 / 0.32

TIFS [54], VCTree [34], and GPSNet [21]. In the ASPIRe
dataset, the HIG method shows impressive results in identi-
fying the position on recall at different top K. In addition,
the HIG model performs well on identifying relations when
it is higher than 1.13% at R@20 compared to GPSNet.
Scene Graph Generation (SGG). We extend the capability
of the HIG model while incorporating image-based scene
graph generation into the training process presented in Ta-
ble 6. Since the prior method was designed for interactions
between pairs of subjects, we focus our comparison on the
double-actor attributes. The HIG method demonstrates su-
perior performance across all interlacement highlighting its
advanced proficiency in attribute recognition within frame-
based scene graph generation scenarios. Compared to the
best-performing previous method, GPSNet, the HIG model
achieves improvements of 3.55%, 5.82%, and 6.73% at
R@100 for position, interaction, and relation.
Performance on PSG. In addition to evaluating our method
on a video dataset, we demonstrate its effectiveness on an
image dataset by comparing it with state-of-the-art methods
on the PSG dataset, as presented in Table 7. When applied to
the PSG dataset, the HIG model treats each image as a single-
frame video, shifting its focus to spatial interactivity rather
than temporal interactivity. Although our model is primarily
designed for video datasets, it achieves comparable results

Table 7. Comparison against previous methods on PSG [48].
Method R/mR@20 R/mR@50 R/mR@100

IMP [45] 16.5 / 6.52 18.2 / 7.05 18.6 / 7.23
MOTIFS [54] 20.0 / 9.10 21.7 / 9.57 22.0 / 9.69
VCTree [34] 20.6 / 9.70 22.1 / 10.2 22.5 / 10.2
GPSNet [21] 17.8 / 7.03 19.6 / 7.49 20.1 / 7.67

PSGFormer [48] 18.6 / 16.7 20.4 / 19.3 20.7 / 19.7
HIG (Ours) 19.4 / 6.42 22.3 / 8.13 26.3 / 9.70

on the image dataset, with only a slight decrease at R@20
compared to state-of-the-art methods. Notably, the HIG
model outperforms VCTree by 3.8% in terms of R@100,
highlighting the strength of the graph representation.

7. Conclusion
We addressed the Visual Interactivity Understanding prob-
lem by introducing the ASPIRe dataset and the Hierarchical
Interlacement Graph. APSIRe established a new benchmark
with its extensive predicate types offering nuanced inter-
activity perspectives. Meanwhile, HIG provides a unified
hierarchical structure for capturing complex video interlace-
ments, demonstrating scalability and flexibility in handling
five interactivity types. Additionally, we provided extensive
experiments showcasing the efficiency of HIG and achieving
state-of-the-art results in both video and image datasets.
Limitations. While the HIG approach significantly ad-
vanced the understanding of interactivities, it faced certain
limitations. Computing possible interlacements became a
computational bottleneck, potentially hindering real-time
applications. Also, the framework faced challenges in han-
dling long-duration videos, where the continual learning of
new interactivities could lead to the decay of previously ac-
quired knowledge. As the HIG model was tailored for video
datasets, its image-based performance might not be optimal.
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1. ASPIRe Dataset Annotation Pipeline
We introduce a specialized system for data labeling that uniquely combines the power of visual and linguistic analysis to
generate precise and contextually rich labels for image data. By employing advanced techniques like RoIAlign for region-
specific data extraction and integrating these with language embeddings, GPT4RoI [5] transcends the conventional labeling
approach. This process, augmented by post-processing with Spacy 1 and meticulous human curation, ensures accurate data
labels.
GPT4RoI. Our initial step involves using GPT4RoI to generate textual descriptions corresponding to input bounding boxes.
GPT4RoI integrates visual and linguistic data and adeptly handles spatial instructions. During processing, GPT4RoI replaces
<regioni> tags in these instructions with results from RoIAlign, derived directly from the image"s features. This process
creates a unique fusion of region-specific data with language embeddings. For enhanced multimodal understanding, this
combination of embeddings is then interpreted by the Vicuna [6] model, a specialized instance of the LLaMA [2]. This allows
us to input bounding boxes around objects and prompt the system for detailed descriptions, covering aspects like appearance,
situation, positioning, interactions, and relationships. For instance, when we input bounding boxes around objects and ask
the system questions, such as determining the relationship between individuals in <region1> and <region2>, the system
responds with detailed, context-rich descriptions.
Post-Processing with Spacy. After generating text with GPT-4RoI, we utilize Spacy, a Python library for natural language
processing, to refine the text further. We specifically use Spacy to add grammatical tags to each word in the text. This tagging
involves identifying the grammatical role of each word and determining if it is a noun, verb, or adjective, among others.
This process is essential for understanding the sentence structure and ensuring that the text is accurate in its content and
grammatically coherent.
Human Curation and Filtering. For the final step, we rely on human expertise to ensure the highest quality of our output.
Our team carefully reviews the Spacy-processed text using a specially designed filter that helps categorize interactivity types.
This human oversight is essential for maintaining the highest standards of accuracy and relevance. It enables us to meticulously
confirm and refine the interaction types identified by the LLM, ensuring that our final label is precise.

2. Data format
Our annotations are organized following the below main structure:

1 data[{
2 "file_name": str,
3 "height": int,
4 "width": int,
5 "image_id": int,
6 "frame_index": int,
7 "video_id": int,

1 https://spacy.io/

1

https://uark-cviu.github.io/ASPIRe/
https://spacy.io/


8 "segments_info":[{
9 "id": int,

10 "track_id": int,
11 "category_id": int,
12 "iscrowd": 0 or 1,
13 "isthing": 0 or 1,
14 "area": int
15 }],
16 "annotations":[{
17 "bbox": [x, y, width, height],
18 "segmentation": [polygon],
19 "bbox_mode": 0 or 1,
20 "category_id": int
21 }]
22 "appearances" : [{
23 "segment_id": int,
24 "app_id": int
25 }],

26 "situations" : [{
27 "segment_id": int,
28 "sit_id": int
29 }],

30 "positions" : [{
31 "segment_id": int,
32 "segment_id": int,
33 "pos_id": int
34 }],

35 "interactions" : [{
36 "segment_id": int,
37 "segment_id": int,
38 "inter_id": int
39 }],

40 "relations" : [[
41 "segment_id": int,
42 "segment_id": int,
43 "rel_id": int
44 ]]
45 }],
46 "thing_classes": [int],
47 "stuff_situations": [int],
48 "predicate_apparances": [int],
49 "predicate_situations": [int],
50 "predicate_positions": [int],
51 "predicate_interactions": [int],
52 "predicate_relations": [int],

2.1. Basic Image Information

This section details the fundamental attributes of each image:
• file_name: The name of the image file.
• height: The height of the image in pixels.
• width: The width of the image in pixels.
• image_id: A unique identifier for the image.



• frame_index: The index of the frame within the video sequence.
• video_id: An identifier for the video or image collection to which this image belongs.

2.2. Segment Information

This section includes the segments_info key, which is a list of segments within the image. Each segment contains:
• id: Unique identifier for the segment.
• track_id: Identifier to track the segment across different frames.
• category_id: Identifier for the category of the object in the segment.
• iscrowd: A binary value indicating if the segment represents a crowd.
• isthing: A binary value indicating if the segment represents a "thing" (as opposed to "stuff" like banner, blanket, curtain,

pillow, towel).
• area: The area covered by the segment in the image.

In addition, for each entry in segments_info, we provide the corresponding masks (segmentation) and bounding
boxes (bbox), each tagged with a specific category_id in the annotations.

2.3. Interactivity Attributes

This section encompasses lists of predicate_appearances, predicate_situations, predicate_positions,
predicate_interactions, and predicate_relations for each segment. For single-actor attributes (i.e., appear-
ances and situations), the structure is as follows:
• segment_id: Identifier for the segment.
• id: Identifier for the interactivity type.

For double-actor attributes (i.e., positions, interactions, and relations), the structure includes two different segment_ids
to represent the interactivity between two segments:
• segment_id_1: Identifier for the first segment.
• segment_id_2: Identifier for the second segment.
• id: Identifier for the interactivity type.

These descriptors represent lists of integers, specifying various aspects of the subject, object, and interactivity for each
bounding box within the annotations and segments_info. For example, [1, 9, 8] in a dual-actor scenario indicates that
the second segment in segments_info is the subject, the ninth segment is the object, and they share a predicate class 8,
signifying a position/interaction/relation. Conversely, [1, 8] or [2, 0] in a single-actor scenario indicates that the second or
third segment in segments_info is associated with a class 8 or 0 predicate of appearance/situation.

3. Approximation

Table 1. Summary of annotated attributes between two actors in our ASPIRe dataset (with ✓represented as 1 and ✗as 0). appearance and
contextual situation are single-actor attributes

Position Interaction Relation
Person-Person ✓ ✗ ✓

Person-Object ✗ ✓ ✗

Object-Person ✓ ✗ ✓

Object-Object ✗ ✗ ✗

We investigate our problem among individual actors and estimate the possible pairs between two actors within these
interactivities. When examining a single attribute, two pivotal metrics arise the subject"s appearance (A) and situation (S).
When we identify a set St at a particular time t to encompass all subjects, these individual interactivities correspond to the
number of subjects, denoted as |St|. When shifting to the bipartite matching of the dual-actor, three central pillars come into
focus: position (PO), interaction (IN ), and relationship (RE). To provide further detail, we classify these interactivities into
four distinct pairs, as shown in Table 1. Each can be depicted as a pairwise matrix product, effectively capturing the presence
or absence of our central attributes.



By leveraging the unique eigenvectors of attributes that span various interactivities, our focus shifts to a set St comprising
n subjects. Specifically, the pairs are determined by combinations of bipartite subjects, which we denote as Cn

2 . We define the
possible configurations combined with this combinatorial expression for each pair with the feasible attribute vector specific
to that particular interactivity. We symbol rPP , rPO, rOP , and rOO that is the feasible attribute eigenvalues equivalented
to each row in the binary coefficients matrix, resulting in the unified equation that defines the number of pairs across the
three interactivities #pairs = Cn

2 × (rPO + rOP + rOO). In our analysis of each actor, we carefully assess both the physical
attributes of the subjects and their contextual situations. Consequently, the number of single attributes considered equals
the number of subjects, denoted as n. Conversely, interactivities related to position, interaction, and relationships involve
dual actors. To elaborate further, we categorize these interactions into four distinct pairs, as presented in Table 1. In each
pairing of dual actors, we define their roles to illustrate how various attributes manifest. These subjects are paired together in
combinations, denoted as Cn

2 . With each pair, we investigate how their interactivities influence each other, employing specific
attribute values customized for those specific interactivities.

Importantly, each type of interactivity exhibits unique characteristics that enable us to form pairs. Positions and relations
are relevant when both the subject and object are persons or when the object assumes the role of a subject and appears
with a person. On the other hand, Interaction exclusively takes place when a person serves as the subject engaging with
an object. As a result, to determine the total number of pairs within these interactions, we utilize the following formula:
#pairs = Cn

2 × (rPO + rOP + rOO), where the variable r, ranging from 1 to 3, corresponds to the attributes of the subjects
within each pair. This formula calculates the number of pairs while interactivities can influence these pairs across three distinct
types of interactions.

4. Data Sample

Appearance: orange ball
Situation: ball in competition
Position: ball in the hand of person

Appearance: white tripod
Situation: tripod in competiton
Position: ball in the yard

Appearance: person in grey t-shirt
Situation: person in competition
Position: person standing to the left of person
Interaction: person holding tripod
Relation: person is spectator of person

Appearance: person in black t-shirt
Situation: person in competition
Position: person standing to the left of person
Interaction: person catching ball
Relation: person and person are teammates

Appearance: person in black t-shirt
Situation: person in competition
Position: person standing to the right of person
Interaction: person watching ball
Relation: person and person are teammates

Appearance: person in blue dress
Situation: person in drama
Position: person standing to the right of person
Interaction: person holding umberella
Relation: person and person are sisters

Appearance: pink umbrella
Situation: umbrella in drama
Position: ball in the hand of the person

Appearance: person in blue dress
Situation: person in drama
Position: person standing to the left of person
Interaction: person holding umbrella
Relation: person and person are sisters

Appearance: blue umbrella
Situation: umbrella in drama
Position: umbrella in the front of the person

Our ASPIRe dataset

Figure 1. Our ASPIRe dataset encompasses a wide variety of scenarios, objects, and interactivities.

Fig. 1 presents selected samples from our ASPIRe dataset, notable for its comprehensive range. This dataset includes
bounding box annotations and provides detailed descriptions of interactivities across various scenarios. As outlined in Sec. 1,
each scene is annotated with precision and contextual relevance, ensuring clarity and circumventing typical ambiguities like
generic or overlapping labels found in other datasets. The interactivity within ASPIRe is categorized into five distinct types:
appearance, situation, position, interaction, and relation. This multifaceted approach to annotation makes ASPIRe uniquely
comprehensive compared to other datasets [1, 3, 4]. Our meticulous annotation process establishes ASPIRe as an invaluable
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Figure 2. Illustration of Hierarchical Interlacement Graph (HIG).

resource for enhancing the accuracy and efficacy of Visual Interactivity Understanding Algorithms.

5. Methodology
5.1. Baseline Methods

Four basic methods [3] are formulated below to assimilate information from adjacent frames, thereby incorporating temporal
information as baseline methods for our problem. At a tth frame, the feature representation of an object i is denoted as qti . Let
Q

(t1,t2)
i be the the set of queries spanning from t1 to t2, given by Q

(t1,t2)
i = {qt1i , . . . , qt2i }. Q also denotes the query tube

throughout the entire video if t1 = 0 and t2 = |V |, acting as the feature set for interactivity classification. To this end, we
employ pairwise fusion as an initial step to obtain the etij embedding:

etij = Concat(qti , q
t
j) (1)

Vanilla Approach involves the fusion of pairwise features:

F t
ij = etij · w + b (2)

where F t
ij represents the final feature after being transformed via a linear operator.

Handcrafted Filter is a filter g (i.e. Gaussian) that convolves with the concatenated feature F t
ij to capture context-specific

information. The operation is expressed as:

F t
ij =

W/2∑
k=−W/2

gk · e(t+k)
ij (3)

where hk denotes the values of the handcrafted filter at position k, and W specifies the window size, defining the temporal
range of frames considered for contextual analysis.
Convolutional Layer incorporates a trainable 1D-Convolutional layer enhances the feature extraction process. The concate-
nated embedding etij undergoes convolution with a set of learnable weights w, capturing temporal patterns:

F t
ij =

W/2∑
k=−W/2

wk · e(t+k)
ij (4)



Table 2. Comparison at different hierarchical levels of the HIG model.
Hierarchical Level Interlacement R/mR@20 R/mR@50 R/mR@100

1

Appearance 7.85 / 0.32 11.47 / 0.38 13.56 / 0.41
Situation 4.12 / 0.28 5.89 / 0.33 8.43 / 0.37
Position 8.67 / 0.22 12.34 / 0.27 16.78 / 0.31

Interaction 5.98 / 0.18 10.76 / 0.23 15.29 / 0.26
Relation 6.21 / 0.15 10.04 / 0.19 14.67 / 0.24

n/4

Appearance 9.43 / 0.39 13.58 / 0.44 15.97 / 0.48
Situation 4.76 / 0.34 6.22 / 0.39 9.67 / 0.43
Position 10.89 / 0.29 14.55 / 0.34 19.03 / 0.38

Interaction 7.34 / 0.24 12.19 / 0.29 17.42 / 0.33
Relation 7.89 / 0.21 11.76 / 0.26 16.34 / 0.30

n/2

Appearance 11.02 / 0.47 15.34 / 0.52 17.89 / 0.56
Situation 4.83 / 0.40 6.56 / 0.45 11.12 / 0.49
Position 12.11 / 0.36 16.78 / 0.41 21.45 / 0.45

Interaction 8.56 / 0.30 14.03 / 0.35 19.67 / 0.39
Relation 9.02 / 0.27 13.89 / 0.32 18.56 / 0.36

3n/4

Appearance 12.76 / 0.53 17.02 / 0.58 19.43 / 0.62
Situation 4.89 / 0.46 7.01 / 0.51 11.78 / 0.55
Position 12.45 / 0.42 18.22 / 0.47 23.67 / 0.51

Interaction 10.12 / 0.36 16.47 / 0.41 22.34 / 0.45
Relation 10.16 / 0.33 15.43 / 0.38 20.89 / 0.42

n (full)

Appearance 15.02 / 0.60 18.60 / 0.64 20.11 / 0.65
Situation 5.01 / 0.56 7.02 / 0.55 12.01 / 0.63
Position 13.02 / 0.09 24.52 / 1.33 42.33 / 1.12

Interaction 12.02 / 0.11 24.65 / 0.12 41.65 / 0.14
Relation 10.26 / 0.29 23.72 / 0.34 41.47 / 0.39

Here, w represents the weights of the convolutional layer.
Transformers leverage the Transformer architecture, which is to model complex interactivities. Queries are subjected to the
cross-attention mechanism to enhance features:

F t
ij = Transformer

(
etij , [e

t−W/2
ij , . . . , e

t+W/2
ij ]

)
(5)

After transforming the concatenated feature via one of the four baseline approaches above, the resulting output Itij between
subject i and subject j at the tth frame, within the context of multi-category classification, is represented as:

Itij = softmax
(
F t
ij

)
(6)

In cases where objects engage in multiple concurrent interactivities, we frame the problem as a multi-category classification
task, utilizing binary cross-entropy loss.
Limitations. Despite their simplicity, the limitation of the above methods lies in their ability to capture and represent temporal
information in videos. First, these filters have a fixed temporal scale, making it challenging to capture information at multiple
temporal resolutions in a single design. Next, they do not inherently capture the spatial or hierarchical relationships between
different frames in a video. Therefore, they lack positional information. Those methods typically span their primary operations
via a temporal window size. As a result, they have a limited receptive field, which means they can only effectively capture
long-range temporal dependencies in videos if they use very deep networks.



5.2. Hierarchical Interlacement Graph

The Limitations of The Monolithic Interlacement Graphs. Monolithic Interlacement Graphs undergo computational
bottlenecks when edges span the entirety of a video containing T frames with n objects. Due to their structure, the number of
correct edge hypotheses is restricted by the constraint Ecorrect ≤ 2n. This implies that each node can correctly associate with at
most two other nodes. Hence, the maximum number of potential edges is Epotential =

n(n−1)
2 , indicating a quadratic growth

pattern and presenting challenges. Firstly, the computational imposed by this graph limits its scalability, particularly when
processing extensive video sequences or handling a significant number of objects. Secondly, while Monolithic Interlacement
Graphs efficiently control short-range dependencies, they struggle to capture sparse long-range interactivities. Finally, any
temporary occlusions within the frames further strengthen the complexity of understanding, increasing the risk of incorrect
interactivities.
Building Temporally-Refined Hierarchical Partitions. The Hierarchical Interlacement Graph (HIG) introduces the Hierar-
chical Clip Partitioning strategy to address these challenges. Initially, the graph initiates interactivities between consecutive
frames, capturing all the activities within two frames. When extending the temporal view, this structure recursively divides
the clip into distinct, non-overlapping temporal segments. Progressing through the hierarchy, each interlacement at level L
captures interactivities spanning more extended periods. This approach ensures that long-term interactivities are inherited
base levels. In addition, the hierarchical structure gains efficiency by converging nodes and edges, considerably reducing the
graph"s dimensions. This speeds up processing and improves clarity, particularly for objects that are temporally obscure in the
frame. Therefore, building temporally refined hierarchical partitions enables it to navigate the intricate object interactivity,
irrespective of their temporal length or complexity.
Number of Hierarchical Levels. We investigates the impact of hierarchical depth on the HIG model"s performance, as
depicted in Fig. 2. The model"s standard configuration encompasses n levels, where n equals the total number of video frames
minus one. In our ablation study, we explore the model"s performance across reduced hierarchical depths, specifically at levels
L = 1, L = n/4, L = n/2, L = 3n/4 and L = n, corresponding to the configurations shown in Fig. 2. This study aims to
ascertain the optimal number of hierarchical levels required for the HIG model to interpret the complex interactions within
a video effectively while also determining whether increasing hierarchical levels significantly boosts accuracy or leads to
overfitting.

We observe that as the hierarchical level increases, encompassing a more significant portion of the video frame, it effectively
reduces noise and leads to a higher recall rate. Tab. 2 reveals that the model can analyze and interpret video content
substantially enhanced as it progresses deeper into its hierarchical structure. The HIG model conceptualizes videos as a series
of interconnected graphs, each corresponding to a pair of frames, adeptly capturing complex interactions within the video. The
key performance indicators, specifically recall and mean recall, evaluated at different thresholds (20, 50, and 100), exhibit a
consistent upward trend with the increasing hierarchical depth. This enhancement is particularly notable in figuring out the
position at the highest hierarchical level, where there is a significant improvement.
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